Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

نویسندگان

  • Ruiting Zheng
  • Jinwei Gao
  • Jianjian Wang
  • Gang Chen
چکیده

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought ...

متن کامل

Experimental Investigation of the Alumina/Paraffin Thermal Conductivity Nanofluids with a New Correlated Equation on Effective Thermal Conductivity

Liquid paraffin as a coolant fluid can be  applied in electronic devices as a result to its suitable capabilities such as electrical insulating, high heat capacity, chemical and thermal stability, and high boiling point. However, the poor thermal conductivity of paraffin has been confined its thermal cooling application. Addition of high conductor nanoparticles to paraffin can fix this drawback...

متن کامل

Solidification and thermal performance analysis of the low carbon steel during the continuous casting process

The present paper evaluates the effect of the nozzle characteristics on the heat transfer and phase change of the low carbon steel during the continuous casting process. A three-dimensional energy equation and a solidification model are used to drive the governing equation of the phase change and temperature distribution. A linear relation is obtained to predict the temperature-dependent of the...

متن کامل

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

متن کامل

Thermal Conductivity of Triphenyl Phosphite's Liquid, Glassy, and Glacial States.

The thermal conductivity κ and heat capacity per unit volume ρCp of triphenyl phosphite (TPP) were measured under different pressure and temperature conditions, and with time during the sluggish liquid to glacial state transformation at temperatures about 15 K above the glass transition temperature. As the transformation slowly proceeds during several hours, ρCp decreases monotonically from tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011